

Fig.12.14 Estimation of carbon and hydrogen. Water and carbon dioxide formed on oxidation of substance are absorbed in anhydrous calcium chloride and potassium hydroxide solutions respectively contained in U tubes.

The mass of water produced is determined by passing the mixture through a weighed U-tube containing anhydrous calcium chloride. Carbon dioxide is absorbed in another U-tube containing concentrated solution of potassium hydroxide. These tubes are connected in series (Fig. 12. 14). The increase in masses of calcium chloride and potassium hydroxide gives the amounts of water and carbon dioxide from which the percentages of carbon and hydrogen are calculated.

Let the mass of organic compound be m g, mass of water and carbon dioxide produced be m_1 and m_2 g respectively;

Percentage of carbon=
$$\frac{12 \times m_2 \times 100}{44 \times m}$$
Percentage of hydrogen =
$$\frac{2 \times m_1 \times 100}{18 \times m}$$

Problem 12.20

On complete combustion, 0.246 g of an organic compound gave 0.198g of carbon dioxide and 0.1014g of water. Determine the percentage composition of carbon and hydrogen in the compound.

Solution

Percentage of carbon $= \frac{12 \times 0.198 \times 100}{44 \times 0.246}$ = 21.95%Percentage of hydrogen $= \frac{2 \times 0.1014 \times 100}{18 \times 0.246}$ = 4.58%

12.10.2 Nitrogen

There are two methods for estimation of nitrogen: (i) Dumas method and (ii) Kjeldahl's method.

(i) Dumas method: The nitrogen containing organic compound, when heated with copper oxide in an atmosphere of carbon dioxide, yields free nitrogen in addition to carbon dioxide and water.

$$C_{v}H_{v}N_{z} + (2x + y/2) CuO \longrightarrow$$

 $x CO_2 + y/2 H_2O + z/2 N_2 + (2x + y/2) Cu$

Traces of nitrogen oxides formed, if any, are reduced to nitrogen by passing the gaseous mixture over a heated copper gauze. The mixture of gases so produced is collected over an aqueous solution of potassium hydroxide which absorbs carbon dioxide. Nitrogen is collected in the upper part of the graduated tube (Fig.12.15).

Let the mass of organic compound = mgVolume of nitrogen collected $= V_1 \text{ mL}$

Room temperature = T_1 K

Volume of nitrogen at STP=
$$\frac{p_1V_1 \times 273}{760 \times T_1}$$

(Let it be V mL)

Where p_1 and V_1 are the pressure and volume of nitrogen, p_1 is different from the atmospheric pressure at which nitrogen gas is collected. The value of p_1 is obtained by the relation;

 p_1 = Atmospheric pressure – Aqueous tension 22400 mL N₂ at STP weighs 28 g.

Fig.12.15 Dumas method. The organic compound yields nitrogen gas on heating it with copper(II) oxide in the presence of CO_2 gas. The mixture of gases is collected over potassium hydroxide solution in which CO_2 is absorbed and volume of nitrogen gas is determined.

$$V \text{ mL N}_2$$
 at STP weighs = $\frac{28 \times V}{22400}$ g

Percentage of nitrogen = $\frac{28 \times V \times 100}{22400 \times m}$

Problem 12.21

In Dumas' method for estimation of nitrogen, 0.3g of an organic compound gave 50mL of nitrogen collected at 300K temperature and 715mm pressure. Calculate the percentage composition of nitrogen in the compound. (Aqueous tension at 300K=15 mm)

Solution

Volume of nitrogen collected at 300K and 715mm pressure is 50 mL Actual pressure = 715-15 =700 mm

Volume of nitrogen at STP = $\frac{273 \times 700 \times 50}{300 \times 760}$ = 41.9 mL

22,400 mL of N_2 at STP weighs = 28 g

41.9 mL of nitrogen weighs= $\frac{28 \times 41.9}{22400}$ g Percentage of nitrogen = $\frac{28 \times 41.9 \times 100}{22400 \times 0.3}$ =17.46%

(ii) Kjeldahl's method: The compound containing nitrogen is heated with concentrated sulphuric acid. Nitrogen in the compound gets converted to ammonium sulphate (Fig. 12.16). The resulting acid mixture is then heated with excess of sodium hydroxide. The liberated ammonia gas is absorbed in an excess of standard solution of sulphuric acid. The amount of ammonia produced is determined by estimating the amount of sulphuric acid consumed in the reaction. It is done by estimating unreacted sulphuric acid left after the absorption of ammonia by titrating it with standard alkali solution. The difference between the initial amount of acid taken and that left

Fig.12.16 Kjeldahl method. Nitrogen-containing compound is treated with concentrated H_2SO_4 to get ammonium sulphate which liberates ammonia on treating with NaOH; ammonia is absorbed in known volume of standard acid.

after the reaction gives the amount of acid reacted with ammonia.

$$\begin{array}{c} \text{Organic compound} + \text{H}_2\text{SO}_4 \longrightarrow (\text{NH}_4)_2\text{SO}_4 \\ \\ \xrightarrow{2\text{NaOH}} & \text{Na}_2\text{SO}_4 + 2\text{NH}_3 + 2\text{H}_2\text{O} \end{array}$$

 $2NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$

Let the mass of organic compound taken = m g Volume of H_2SO_4 of molarity, M, taken = VmL

Volume of NaOH of molarity, M, used for titration of excess of $H_2SO_4 = V_1 mL$ V_1mL of NaOH of molarity M

= $V_1 / 2 \text{ mL of } H_2 \text{SO}_4 \text{ of molarity } M$ Volume of $H_2 \text{SO}_4$ of molarity M unused = $(V - V_1 / 2) \text{ mL}$

(V- $V_1/2$) mL of H_2SO_4 of molarity M

= $2(V-V_1/2)$ mL of NH₃ solution of molarity M.

1000 mL of 1 M $\rm NH_3$ solution contains 17g $\rm NH_3$ or 14 g of N

 $2(V-V_1/2)$ mL of NH₃ solution of molarity M contains:

$$\frac{14 \times M \times 2(V - V_1 / 2)}{1000} \text{ g N}$$

Percentage of N=
$$\frac{14 \times M \times 2(V - V_1 / 2)}{1000} \times \frac{100}{m}$$
$$= \frac{1.4 \times M \times 2(V - V_1 / 2)}{m}$$

Kjeldahl method is not applicable to compounds containing nitrogen in nitro and azo groups and nitrogen present in the ring (e.g. pyridine) as nitrogen of these compounds does not change to ammonium sulphate under these conditions.

Problem 12.22

During estimation of nitrogen present in an organic compound by Kjeldahl's method, the ammonia evolved from 0.5 g of the compound in Kjeldahl's estimation of nitrogen, neutralized 10 mL of 1 M H_2SO_4 . Find out the percentage of nitrogen in the compound.

Solution

1 M of 10 mL $\rm H_2SO_4=1M$ of 20 mL $\rm NH_3$ 1000 mL of 1M ammonia contains 14 g nitrogen

20 mL of 1M ammonia contains

366

ORGANIC CHEMISTRY - SOME BASIC PRINCIPLES AND TECHNIQUES

12.10.3 Halogens

Carius method: A known mass of an organic compound is heated with fuming nitric acid in the presence of silver nitrate contained in a hard glass tube known as Carius tube, (Fig. 12.17)

Fig. 12.17 Carius method. Halogen containing organic compound is heated with fuming nitric acid in the presence of silver nitrate.

in a furnace. Carbon and hydrogen present in the compound are oxidised to carbon dioxide and water. The halogen present forms the corresponding silver halide (AgX). It is filtered, washed, dried and weighed.

Let the mass of organic

compound taken = m g

Mass of AgX formed = $m_1 g$ 1 mol of AgX contains 1 mol of X

Mass of halogen in m_1g of AgX

$$= \frac{\text{atomic mass of } X \times m_1 g}{\text{molecular mass of } AgX}$$

Percentage of halogen

atomic mass of $X \times m_1 \times 100$

molecular mass of AgX $\times m$

Problem 12.23

In Carius method of estimation of halogen, 0.15 g of an organic compound gave 0.12 g of AgBr. Find out the percentage of bromine in the compound. **Solution**

Molar mass of AgBr = $108 + 80$ = 188 g mol^{-1}
188 g AgBr contains 80 g bromine
0.12 g AgBr contains $\frac{80 \times 0.12}{188}$ g bromine
Percentage of bromine= $\frac{80 \times 0.12 \times 100}{188 \times 0.15}$
= 34.04%

12.10.4 Sulphur

A known mass of an organic compound is heated in a Carius tube with sodium peroxide or fuming nitric acid. Sulphur present in the compound is oxidised to sulphuric acid. It is precipitated as barium sulphate by adding excess of barium chloride solution in water. The precipitate is filtered, washed, dried and weighed. The percentage of sulphur can be calculated from the mass of barium sulphate. Let the mass of organic

compound taken = m g and the mass of barium sulphate formed = m₁g 1 mol of BaSO₄ = 233 g BaSO₄ = 32 g sulphur m₁ g BaSO₄ contains $\frac{32 \times m_1}{233}$ g sulphur

Percentage of sulphur= $\frac{32 \times m_1 \times 100}{233 \times m}$

Problem 12.24

In sulphur estimation, 0.157 g of an organic compound gave 0.4813 g of

barium sulphate. What is the percentage of sulphur in the compound?

Solution

Molecular mass of $BaSO_4 = 137+32+64$ = 233 g

 233 g BaSO_4 contains 32 g sulphur

0.4813 g BaSO₄ contains
$$\frac{32 \times 0.4813}{233}$$
 g

sulphur

Percentage of sulphur= $\frac{32 \times 0.4813 \times 100}{233 \times 0.157}$ = 42.10%

12.10.5 Phosphorus

A known mass of an organic compound is heated with fuming nitric acid whereupon phosphorus present in the compound is oxidised to phosphoric acid. It is precipitated as ammonium phosphomolybdate, $(NH_4)_3$ PO₄.12MoO₃, by adding ammonia and ammonium molybdate. Alternatively, phosphoric acid may be precipitated as MgNH₄PO₄ by adding magnesia mixture which on ignition yields Mg₂P₂O₇.

Let the mass of organic compound taken = m g and mass of ammonium phospho molydate = m_1g

Molar mass of $(NH_4)_3PO_4.12MoO_3 = 1877g$

Percentage of phosphorus = $\frac{31 \times m_1 \times 100}{1877 \times m}$ %

If phosphorus is estimated as $Mg_2P_2O_7$,

Percentage of phosphorus =
$$\frac{62 \times m_1 \times 100}{222 \times m}$$
%

where, 222 u is the molar mass of $Mg_2P_2O_7$, m, the mass of organic compound taken, m_1 , the mass of $Mg_2P_2O_7$ formed and 62, the mass of two phosphorus atoms present in the compound $Mg_2P_2O_7$.

12.10.6 Oxygen

The percentage of oxygen in an organic compound is usually found by difference between the total percentage composition (100) and the sum of the percentages of all other elements. However, oxygen can also be estimated directly as follows:

A definite mass of an organic compound is decomposed by heating in a stream of nitrogen gas. The mixture of gaseous products containing oxygen is passed over red-hot coke when all the oxygen is converted to carbon monoxide. This mixture is passed through warm iodine pentoxide (I_2O_5) when carbon monoxide is oxidised to carbon dioxide producing iodine.

Compound
$$\xrightarrow{\text{heat}} O_2$$
 + other gaseous products

 $2C + O_2 \xrightarrow{1373K} 2CO] \times 5$ (A) $I_2O_5 + 5CO \longrightarrow I_2 + 5CO_2] \times 2$ (B)

On making the amount of CO produced in equation (A) equal to the amount of CO used in equation (B) by multiplying the equations (A) and (B) by 5 and 2 respectively; we find that each mole of oxygen liberated from the compound will produce two moles of carbondioxide.

Thus 88 g carbon dioxide is obtained if 32 g oxygen is liberated.

Let the mass of organic compound taken be mgMass of carbon dioxide produced be $m_1 g$

 \therefore m₁ g carbon dioxide is obtained from $32 \times m_1$

$$\frac{2\times m_1}{88} g O_2$$

 $\therefore \text{Percentage of oxygen} = \frac{32 \times m_1 \times 100}{88 \times m}\%$

The percentage of oxygen can be derived from the amount of iodine produced also.

Presently, the estimation of elements in an organic compound is carried out by using microquantities of substances and automatic experimental techniques. The elements, carbon, hydrogen and nitrogen present in a compound are determined by an apparatus known as CHN *elemental analyser*. The analyser requires only a very small amount of the substance (1-3 mg) and displays the values on a screen within a short time. A detailed discussion of such methods is beyond the scope of this book.